79 research outputs found

    Design, analysis, and control of a cable-driven parallel platform with a pneumatic muscle active support

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The neck is an important part of the body that connects the head to the torso, supporting the weight and generating the movement of the head. In this paper, a cable-driven parallel platform with a pneumatic muscle active support (CPPPMS) is presented for imitating human necks, where cable actuators imitate neck muscles and a pneumatic muscle actuator imitates spinal muscles, respectively. Analyzing the stiffness of the mechanism is carried out based on screw theory, and this mechanism is optimized according to the stiffness characteristics. While taking the dynamics of the pneumatic muscle active support into consideration as well as the cable dynamics and the dynamics of the Up-platform, a dynamic modeling approach to the CPPPMS is established. In order to overcome the flexibility and uncertainties amid the dynamic model, a sliding mode controller is investigated for trajectory tracking, and the stability of the control system is verified by a Lyapunov function. Moreover, a PD controller is proposed for a comparative study. The results of the simulation indicate that the sliding mode controller is more effective than the PD controller for the CPPPMS, and the CPPPMS provides feasible performances for operations under the sliding mode control

    The Effect Of Dynamic Pricing And Revenue Management On Agent Behavior And Customer Perception

    Get PDF
    My dissertation extends the traditional fields of revenue management and dynamic pricing to newer markets. Specifically, my first two chapters explore the revenue management strategies and their impacts in the airline industry in the presence of loyalty programs. The first chapter solves the optimal revenue management algorithms when the firm is rewarding frequent customers with free capacity. Using a game-theoretic Littlewood model, we show that limiting award capacity can increase profits by enhancing loyalty award values; airlines can benefit from transitioning from mileage-based programs to revenue-based programs by simplifying its revenue management algorithm and allowing 100% award availability. The second chapter investigates customers\u27 evaluations of loyalty program points. By fitting a Multinomial Logit model on DB1B data set, we calibrate customers\u27 valuations for loyalty points at the issuance and redemption. We have two main conclusions: consumers are rational about the value of miles at issuance, but underestimate and overspend miles at redemption; higher award availability and more award choices lead to higher values of Loyalty points. Finally, my third chapter examines the impact of dynamic pricing in the ride-sharing economy. By using actual Uber pricing and partner data, the paper shows that ride-sharing platforms can efficiently signal market conditions, stimulate desirable agents\u27 behavior, and reduce marketplace frictions through dynamic pricing

    A Proposed Theoretical Model of Discontinuous Usage of Voice-Activated Intelligent Personal Assistants (IPAs)

    Get PDF
    Based on the contradictory phenomenon of rapid development of Voice-Activated Intelligent Personal Assistants (Voice-Activated IPAs) and discontinuous usage of it, this paper investigates the antecedents of discontinuous usage of Voice-Activated IPAs. We first analyze the topic of Siri usage discussion from Zhihu\u27s Q&A website, and then propose a theoretical model which hypothesized that discontinuous usage of Voice-Activated IPAs are affected by perceived ambiguity, cognitive overload, privacy concern, social embarrassment and lack of integration. It is hypothesized that perceived ambiguity will exert nonlinear impacts on discontinuous usage. Meanwhile, perceived ambiguity is also affected by level of personification in a nonlinear way. Scale development and data collection would be conducted for the future work. It is expected that the results our research could provide theoretical and practical implications for the design of Voice-Activated IPAs

    Achievable Rate Region and Path-Based Beamforming for Multi-User Single-Carrier Delay Alignment Modulation

    Full text link
    Delay alignment modulation (DAM) is a novel wideband transmission technique for mmWave massive MIMO systems, which exploits the high spatial resolution and multi-path sparsity to mitigate ISI, without relying on channel equalization or multi-carrier transmission. In particular, DAM leverages the delay pre-compensation and path-based beamforming to effectively align the multi-path components, thus achieving the constructive multi-path combination for eliminating the ISI while preserving the multi-path power gain. Different from the existing works only considering single-user DAM, this paper investigates the DAM technique for multi-user mmWave massive MIMO communication. First, we consider the asymptotic regime when the number of antennas Mt at BS is sufficiently large. It is shown that by employing the simple delay pre-compensation and per-path-based MRT beamforming, the single-carrier DAM is able to perfectly eliminate both ISI and IUI. Next, we consider the general scenario with Mt being finite. In this scenario, we characterize the achievable rate region of the multi-user DAM system by finding its Pareto boundary. Specifically, we formulate a rate-profile-constrained sum rate maximization problem by optimizing the per-path-based beamforming. Furthermore, we present three low-complexity per-path-based beamforming strategies based on the MRT, zero-forcing, and regularized zero-forcing principles, respectively, based on which the achievable sum rates are studied. Finally, we provide simulation results to demonstrate the performance of our proposed strategies as compared to two benchmark schemes based on the strongest-path-based beamforming and the prevalent OFDM, respectively. It is shown that DAM achieves higher spectral efficiency and/or lower peak-to-average-ratio, for systems with high spatial resolution and multi-path diversity.Comment: 13 pages, 5 figure

    Quality assurance plan for China collection 2.0 aerosol datasets

    Get PDF
    The inversion of atmospheric aerosol optical depth (AOD) using satellite data has always been a challenge topic in atmospheric research. In order to solve the aerosol retrieval problem over bright land surface, the Synergetic Retrieval of Aerosol Properties (SRAP) algorithm has been developed based on the synergetic using of the MODIS data of TERRA and AQUA satellites [1, 2]. In this paper we describe, in details, the quality assessment or quality assurance (QA) plan for AOD products derived using the SRAP algorithm. The pixel-based QA plan is to give a QA flag to every step of the process in the AOD retrieval. The quality assessment procedures include three common aspects: 1) input data resource flags, 2) retrieval processing flags, 3) product quality flags [3]. Besides, all AOD products are assigned a QA ‘confidence’ flag (QAC) that represents the aggregation of all the individual QA flags. This QAC value ranges from 3 to 0, with QA = 3 indicating the retrievals of highest confidence and QA = 2/QA = 1 progressively lower confidence [4], and 0 means ‘bad’ quality. These QA (QAC) flags indicate how the particular retrieval process should be considered. It is also used as a filter for expected quantitative value of the retrieval, or to provide weighting for aggregating/averaging computations [5]. All of the QA flags are stored as a “bit flag” scientific dataset array in which QA flags of each step are stored in particular bit positions

    Event-Centric Question Answering via Contrastive Learning and Invertible Event Transformation

    Get PDF
    Human reading comprehension often requires reasoning of event semantic relations in narratives, represented by Event-centric Question-Answering (QA). To address event-centric QA, we propose a novel QA model with contrastive learning and invertible event transformation, call TranCLR. Our proposed model utilizes an invertible transformation matrix to project semantic vectors of events into a common event embedding space, trained with contrastive learning, and thus naturally inject event semantic knowledge into mainstream QA pipelines. The transformation matrix is fine-tuned with the annotated event relation types between events that occurred in questions and those in answers, using event-aware question vectors. Experimental results on the Event Semantic Relation Reasoning (ESTER) dataset show significant improvements in both generative and extractive settings compared to the existing strong baselines, achieving over 8.4% gain in the token-level F1 score and 3.0% gain in Exact Match (EM) score under the multi-answer setting. Qualitative analysis reveals the high quality of the generated answers by TranCLR, demonstrating the feasibility of injecting event knowledge into QA model learning. Our code and models can be found at https://github.com/LuJunru/TranCLR.Comment: Findings of EMNLP 202

    Event-centric question answering via contrastive learning and invertible event transformation

    Get PDF
    Human reading comprehension often requires reasoning of event semantic relations in narratives, represented by Event-centric Question-Answering (QA). To address event-centric QA, we propose a novel QA model with contrastive learning and invertible event transformation, call TranCLR. Our proposed model utilizes an invertible transformation matrix to project semantic vectors of events into a common event embedding space, trained with contrastive learning, and thus naturally inject event semantic knowledge into mainstream QA pipelines. The transformation matrix is fine-tuned with the annotated event relation types between events that occurred in questions and those in answers, using event-aware question vectors. Experimental results on the Event Semantic Relation Reasoning (ESTER) dataset show significant improvements in both generative and extractive settings compared to the existing strong baselines, achieving over 8.4% gain in the token-level F1 score and 3.0% gain in Exact Match (EM) score under the multi-answer setting. Qualitative analysis reveals the high quality of the generated answers by TranCLR, demonstrating the feasibility of injecting event knowledge into QA model learning. Our code and models can be found at https://github.com/LuJunru/TranCLR

    LLM-Mini-CEX: Automatic Evaluation of Large Language Model for Diagnostic Conversation

    Full text link
    There is an increasing interest in developing LLMs for medical diagnosis to improve diagnosis efficiency. Despite their alluring technological potential, there is no unified and comprehensive evaluation criterion, leading to the inability to evaluate the quality and potential risks of medical LLMs, further hindering the application of LLMs in medical treatment scenarios. Besides, current evaluations heavily rely on labor-intensive interactions with LLMs to obtain diagnostic dialogues and human evaluation on the quality of diagnosis dialogue. To tackle the lack of unified and comprehensive evaluation criterion, we first initially establish an evaluation criterion, termed LLM-specific Mini-CEX to assess the diagnostic capabilities of LLMs effectively, based on original Mini-CEX. To address the labor-intensive interaction problem, we develop a patient simulator to engage in automatic conversations with LLMs, and utilize ChatGPT for evaluating diagnosis dialogues automatically. Experimental results show that the LLM-specific Mini-CEX is adequate and necessary to evaluate medical diagnosis dialogue. Besides, ChatGPT can replace manual evaluation on the metrics of humanistic qualities and provides reproducible and automated comparisons between different LLMs

    Technical note: Intercomparison of three AATSR Level 2 (L2) AOD products over China

    Get PDF
    One of four main focus areas of the PEEX initiative is to establish and sustain long-term, continuous, and comprehensive ground-based, airborne, and seaborne observation infrastructure together with satellite data. The Advanced Along-Track Scanning Radiometer (AATSR) aboard ENVISAT is used to observe the Earth in dual view. The AATSR data can be used to retrieve aerosol optical depth (AOD) over both land and ocean, which is an important parameter in the characterization of aerosol properties. In recent years, aerosol retrieval algorithms have been developed both over land and ocean, taking advantage of the features of dual view, which can help eliminate the contribution of Earth's surface to top-of-atmosphere (TOA) reflectance. The Aerosol_cci project, as a part of the Climate Change Initiative (CCI), provides users with three AOD retrieval algorithms for AATSR data, including the Swansea algorithm (SU), the ATSR-2ATSR dual-view aerosol retrieval algorithm (ADV), and the Oxford-RAL Retrieval of Aerosol and Cloud algorithm (ORAC). The validation team of the Aerosol-CCI project has validated AOD (both Level 2 and Level 3 products) and AE (Ångström Exponent) (Level 2 product only) against the AERONET data in a round-robin evaluation using the validation tool of the AeroCOM (Aerosol Comparison between Observations and Models) project. For the purpose of evaluating different performances of these three algorithms in calculating AODs over mainland China, we introduce ground-based data from CARSNET (China Aerosol Remote Sensing Network), which was designed for aerosol observations in China. Because China is vast in territory and has great differences in terms of land surfaces, the combination of the AERONET and CARSNET data can validate the L2 AOD products more comprehensively. The validation results show different performances of these products in 2007, 2008, and 2010. The SU algorithm performs very well over sites with different surface conditions in mainland China from March to October, but it slightly underestimates AOD over barren or sparsely vegetated surfaces in western China, with mean bias error (MBE) ranging from 0.05 to 0.10. The ADV product has the same precision with a low root mean square error (RMSE) smaller than 0.2 over most sites and the same error distribution as the SU product. The main limits of the ADV algorithm are underestimation and applicability; underestimation is particularly obvious over the sites of Datong, Lanzhou, and Urumchi, where the dominant land cover is grassland, with an MBE larger than 0.2, and the main aerosol sources are coal combustion and dust. The ORAC algorithm has the ability to retrieve AOD at different ranges, including high AOD (larger than 1.0); however, the stability deceases significantly with increasing AOD, especially when AOD > 1.0. In addition, the ORAC product is consistent with the CARSNET product in winter (December, January, and February), whereas other validation results lack matches during winter
    • 

    corecore